Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 783: 146952, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33866176

RESUMO

The fate of nanoparticles (NPs) in soil under relevant environmental conditions is still poorly understood. In this study, the mobility of two metal-oxide nanoparticles (CuO and TiO2) in contrasting agricultural soils was investigated in water-saturated soil columns. The transport of TiO2 and CuO-NPs were assessed in six soils with three different textures (from sand to clay) and two contrasted organic matter (OM) contents for each texture. TiO2 mobility was very low in all soils, regardless of texture and OM content. Mass recoveries were always less than 5%, probably in relation with the strong homo-aggregation of TiO2-NPs observed in all soil solutions, with apparent sizes 3-6 times larger than their nominal size. This low mobility suggests that TiO2-NPs present a low risk of direct groundwater contamination in contrasted surface soils. Although their retention was also generally high (more than 86%), CuO nanoparticles were found to be mobile in all soils. This is probably related to their smaller apparent size and low capacity of homo-aggregation of CuO-NPs in all soil solutions. No clear influence of neither soil texture or soil total organic matter content could be observed on CuO transport. However, this study shows that in contrasted agricultural soils, CuO-NPs transport is mainly controlled by the solutes dissolved in soil solution (DOC and PO4 species), rather than by the properties of the soil solid phase.

2.
Chemosphere ; 269: 128761, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33168285

RESUMO

The widespread use of silver nanoparticles (AgNPs) in consumer products that release Ag throughout their life cycle has raised potential environmental concerns. AgNPs primarily accumulate in soil through the spreading of sewage sludge (SS). In this study, the effects of direct exposure to AgNPs or indirect exposure via SS contaminated with AgNPs on the earthworm Eisenia fetida and soil microbial communities were compared, through 3 scenarios offering increasing exposure concentrations. The effects of Ag speciation were analyzed by spiking SS with AgNPs or AgNO3 before application to soil. SS treatment strongly impacted Ag speciation due to the formation of Ag2S species that remained sulfided after mixing in the soil. The life traits and expression of lysenin, superoxide dismutase, cd-metallothionein genes in earthworms were not impacted by Ag after 5 weeks of exposure, but direct exposure to Ag without SS led to bioaccumulation of Ag, suggesting transfer in the food chain. Ag exposure led to a decrease in potential carbon respiration only when directly added to the soil. The addition of SS had a greater effect on soil microbial diversity than the form of Ag, and the formation of Ag sulfides in SS reduced the impact of AgNPs on E. fetida and soil microorganisms compared with direct addition.


Assuntos
Nanopartículas Metálicas , Microbiota , Oligoquetos , Poluentes do Solo , Animais , Nanopartículas Metálicas/toxicidade , Esgotos , Prata/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
3.
Front Microbiol ; 9: 3102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619181

RESUMO

Metal-oxide nanoparticles (NPs) such as copper oxide (CuO) NPs offer promising perspectives for the development of novel agro-chemical formulations of pesticides and fertilizers. However, their potential impact on agro-ecosystem functioning still remains to be investigated. Here, we assessed the impact of CuO-NPs (0.1, 1, and 100 mg/kg dry soil) on soil microbial activities involved in the carbon and nitrogen cycles in five contrasting agricultural soils in a microcosm experiment over 90 days. Additionally, in a pot experiment, we evaluated the influence of plant presence on the toxicity of CuO-NPs on soil microbial activities. CuO-NPs caused significant reductions of the three microbial activities measured (denitrification, nitrification, and soil respiration) at 100 mg/kg dry soil, but the low concentrations (0.1 and 1 mg/kg) had limited effects. We observed that denitrification was the most sensitive microbial activity to CuO-NPs in most soil types, while soil respiration and nitrification were mainly impacted in coarse soils with low organic matter content. Additionally, large decreases in heterotrophic microbial activities were observed in soils planted with wheat, even at 1 mg/kg for soil substrate-induced respiration, indicating that plant presence did not mitigate or compensate CuO-NP toxicity for microorganisms. These two experiments show that CuO-NPs can have detrimental effects on microbial activities in soils with contrasting physicochemical properties and previously exposed to various agricultural practices. Moreover, we observed that the negative effects of CuO-NPs increased over time, indicating that short-term studies (hours, days) may underestimate the risks posed by these contaminants in soils.

4.
Nanotoxicology ; 11(2): 247-255, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28151030

RESUMO

Titanium-dioxide nanoparticles (TiO2-NPs) are increasingly released in agricultural soils through, e.g. biosolids, irrigation or nanoagrochemicals. Soils are submitted to a wide range of concentrations of TiO2-NPs depending on the type of exposure. However, most studies have assessed the effects of unrealistically high concentrations, and the dose-response relationships are not well characterized for soil microbial communities. Here, using soil microcosms, we assessed the impact of TiO2-NPs at concentrations ranging from 0.05 to 500 mg kg-1 dry-soil, on the activity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizing bacteria (Nitrobacter and Nitrospira). In addition, aggregation and oxidative potential of TiO2-NPs were measured in the spiking suspensions, as they can be important drivers of TiO2-NPs toxicity. After 90 days of exposure, non-classical dose-response relationships were observed for nitrifier abundance or activity, making threshold concentrations impossible to compute. Indeed, AOA abundance was reduced by 40% by TiO2-NPs whatever the concentration, while Nitrospira was never affected. Moreover, AOB and Nitrobacter abundances were decreased mainly at intermediate concentrations nitrification was reduced by 25% at the lowest (0.05 mg kg-1) and the highest (100 and 500 mg kg-1) TiO2-NPs concentrations. Path analyses indicated that TiO2-NPs affected nitrification through an effect on the specific activity of nitrifiers, in addition to indirect effects on nitrifier abundances. Altogether these results point out the need to include very low concentrations of NPs in soil toxicological studies, and the lack of relevance of classical dose-response tests and ecotoxicological dose metrics (EC50, IC50…) for TiO2-NPs impact on soil microorganisms.


Assuntos
Nanopartículas/toxicidade , Microbiologia do Solo , Solo/química , Titânio/toxicidade , Amônia/análise , Archaea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Nanopartículas/química , Nitrificação , Nitrobacter/efeitos dos fármacos , Oxirredução , Microbiologia do Solo/normas , Titânio/química
5.
Environ Sci Technol ; 50(19): 10693-10699, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27589234

RESUMO

Soils are exposed to nanoparticles (NPs) as a result of their increasing use in many commercial products. Adverse effects of NPs on soil microorganisms have been reported in several ecotoxicological studies using microcosms. Although repeated exposures are more likely to occur in soils, most of these previous studies were performed as a single exposure to NPs. Contrary to single contamination, the study of multiple NP contaminations in soils requires the use of specialized setups. Using a soil column experiment, we compared the influence of single and repeated exposures (one, two, or three exposures that resulted in the same final concentration applied) on the transport of titanium dioxide (TiO2) NPs through soil and the effect of these different exposure scenarios on the abundance and activity of soil nitrifying microbial communities after a 2 month incubation. The transport of TiO2 NPs was very limited under both single and repeated exposures and was highest for the lowest concentration injected during the first application. Significant decreases in nitrification activity and ammonia-oxidizing archaea and bacteria populations were observed only for the repeated exposure scenario (three TiO2 NP contaminations). These results suggest that, under repeated exposures, the transport of TiO2 NPs to deep soil layers and groundwater is limited and that a chronic contamination is more harmful for the soil microbiological functioning than a single exposure.


Assuntos
Microbiologia do Solo , Solo , Archaea , Nanopartículas/toxicidade , Nitrificação , Titânio/toxicidade
6.
Sci Rep ; 6: 33643, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27659196

RESUMO

Soils are facing new environmental stressors, such as titanium dioxide nanoparticles (TiO2-NPs). While these emerging pollutants are increasingly released into most ecosystems, including agricultural fields, their potential impacts on soil and its function remain to be investigated. Here we report the response of the microbial community of an agricultural soil exposed over 90 days to TiO2-NPs (1 and 500 mg kg-1 dry soil). To assess their impact on soil function, we focused on the nitrogen cycle and measured nitrification and denitrification enzymatic activities and by quantifying specific representative genes (amoA for ammonia-oxidizers, nirK and nirS for denitrifiers). Additionally, diversity shifts were examined in bacteria, archaea, and the ammonia-oxidizing clades of each domain. With strong negative impacts on nitrification enzyme activities and the abundances of ammonia-oxidizing microorganism, TiO2-NPs triggered cascading negative effects on denitrification enzyme activity and a deep modification of the bacterial community structure after just 90 days of exposure to even the lowest, realistic concentration of NPs. These results appeal further research to assess how these emerging pollutants modify the soil health and broader ecosystem function.

7.
Environ Sci Pollut Res Int ; 22(18): 13710-23, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25647498

RESUMO

This report presents an exhaustive literature review of the effects of engineered nanoparticles on soil microbial communities. The toxic effects on microbial communities are highly dependent on the type of nanoparticles considered. Inorganic nanoparticles (metal and metal oxide) seem to have a greater toxic potential than organic nanoparticles (fullerenes and carbon nanotubes) on soil microorganisms. Detrimental effects of metal and metal oxide nanoparticles on microbial activity, abundance, and diversity have been demonstrated, even for very low concentrations (<1 mg kg(-1)). On the opposite, the negative effects of carbon nanoparticles are observed only in presence of high concentrations (>250 mg kg(-1)), representing a worst case scenario. Considering that most of the available literature has analyzed the impact of an acute contamination of nanoparticles using high concentrations in a single soil, several research needs have been identified, and new directions have been proposed. The effects of realistic concentrations of nanoparticles based on the concentrations predicted in modelization studies and chronic contaminations should be simulated. The influence of soil properties on the nanoparticle toxicity is still unknown and that is why it is crucial to consider the ecotoxicity of nanoparticles in a range of different soils. The identification of soil parameters controlling the bioavailability and toxicity of nanoparticles is fundamental for a better environmental risk assessment.


Assuntos
Biodiversidade , Engenharia , Nanopartículas/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade
8.
J Hazard Mater ; 283: 529-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25464292

RESUMO

Information regarding the impact of low concentration of engineered nanoparticles on soil microbial communities is currently limited and the importance of soil characteristics is often neglected in ecological risk assessment. To evaluate the impact of TiO2 nanoparticles (NPs) on soil microbial communities (measured on bacterial abundance and carbon mineralization activity), 6 agricultural soils exhibiting contrasted textures and organic matter contents were exposed for 90 days to a low environmentally relevant concentration or to an accidental spiking of TiO2-NPs (1 and 500mgkg(-1) dry soil, respectively) in microcosms. In most soils, TiO2-NPs did not impact the activity and abundance of microbial communities, except in the silty-clay soil (high OM) where C-mineralization was significantly lowered, even with the low NPs concentration. Our results suggest that TiO2-NPs toxicity does not depend on soil texture but likely on pH and OM content. We characterized TiO2-NPs aggregation and zeta potential in soil solutions, in order to explain the difference of TiO2-NPs effects on soil C-mineralization. Zeta potential and aggregation of TiO2-NPs in the silty-clay (high OM) soil solution lead to a lower stability of TiO2-NP-aggregates than in the other soils. Further experiments would be necessary to evaluate the relationship between TiO2-NPs stability and toxicity in the soil.


Assuntos
Bactérias/efeitos dos fármacos , Carbono/química , Nanopartículas/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Titânio/toxicidade , Agricultura , Solo/química
9.
Vet Parasitol ; 183(1-2): 59-67, 2011 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-21764217

RESUMO

Toxoplasmosis is a world-wide infection caused by Toxoplasma gondii. Oocysts disseminated in the environment by infected cats provide a major source of infection for humans and intermediate hosts. The level of soil contamination and the dynamics of this contamination are mostly unknown due to the lack of sensitivity of detection method. Our aim was to improve the detection of T. gondii oocysts in soil samples by comparing three extraction protocols (A, B and C) on unsporulated and sporulated oocysts of different strains and ages, and by testing the effect of sporulation and soil characteristics on oocyst recovery using the most efficient method. The oocyst recovery obtained using protocol C, in which the flotation solution was placed under the sample solution after the dispersion step, was at least ten-fold higher than protocols A and B, in which the sample was just filtered before flotation. The efficiency of protocol C, tested on five artificial soil matrices and four natural soils inoculated with oocysts, was lowest in soils with high proportions of sand. We recommend the protocol C for field investigations, and we advise that results should be interpreted with caution, considering the effect of soil characteristics, especially sand content, on oocyst recovery.


Assuntos
DNA de Protozoário/isolamento & purificação , Solo/parasitologia , Toxoplasma/isolamento & purificação , Toxoplasmose/parasitologia , Animais , Gatos , DNA de Protozoário/genética , Fezes/parasitologia , Humanos , Camundongos , Oocistos , Reação em Cadeia da Polimerase , Organismos Livres de Patógenos Específicos , Fatores de Tempo , Toxoplasma/genética
10.
Environ Sci Technol ; 40(20): 6324-9, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17120560

RESUMO

This study is part of a European project focused on understanding the biotic and abiotic mechanisms involved in the retention and dissemination of transmissible spongiform encephalopathies (TSE) infectivity in soil in order to propose practical recommendations to limit environmental contamination. A 1-year field experiment was conducted with lamb carcasses buried in a pasture soil at three depths (25, 45, and 105 cm). Microbial community response to carcasses was monitored through the potential proteolytic activity and substrate induced respiration (SIR). Soil above carcasses and control soil exhibited low proteolytic capacity, whatever the depth of burial. Contrastingly, in soil beneath the carcasses, proteolysis was stimulated. Decomposing carcasses also stimulated SIR, i.e., microbial biomass, suggesting that proteolytic populations specifically developed on lixiviates from animal tissues. Decomposition of soft tissues occurred within 2 months at subsurface while it lasted at least 1 year at deeper depth where proteolytic activities were season-dependent. The ability of soil proteases to degrade the beta form of prion protein was shown in vitro and conditions of burial relevant to minimize the risk of prion protein dissemination are discussed.


Assuntos
Príons/metabolismo , Ovinos/metabolismo , Microbiologia do Solo , Solo/análise , Animais , Biodegradação Ambiental , Biomassa , Endopeptidases/metabolismo , Estações do Ano , Ovinos/microbiologia , Poluentes do Solo/análise
11.
J Microbiol Methods ; 53(1): 87-95, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12609727

RESUMO

In the approaches or models which aim to understand and/or predict how the functioning of ecosystems may be affected by perturbations or disturbances, little attention is generally given to microorganisms. Even when they are taken into account as indicators, variables which are poorly informative about the changes in the microbial functioning (microbial biomass or diversity or total number of microorganisms) are often used. To be able to estimate, in complex environments, the quantity of enzymes involved in key ecosystem processes may constitute a useful complementary tool. Here, we describe an immunological method for detecting and quantifying, in complex environments, the nitrite oxidoreductase (NOR), responsible for the oxidation of nitrite to nitrate. The alpha-catalytic subunit of the enzyme was purified from Nitrobacter hamburgensis and used for the production of polyclonal antibodies. These antibodies were used to detect and quantify the NOR by a chemifluorescence technique on Western blots after separation of total proteins from pure cultures and soil samples. They recognized the alpha-NOR of all the Nitrobacter species described to date, but no reaction was observed with members of other nitrite-oxidizing genera. The detection threshold and reproducibility of the proposed method were evaluated. The feasibility of its use to quantify NOR in a soil was tested.


Assuntos
Anticorpos Antibacterianos/imunologia , Nitrito Redutases/análise , Nitrobacter/enzimologia , Animais , Especificidade de Anticorpos , Proteínas de Bactérias/análise , Western Blotting/métodos , Contagem de Colônia Microbiana , Meios de Cultura , Meio Ambiente , Medições Luminescentes , Nitrito Redutases/imunologia , Nitritos/metabolismo , Nitrobacter/crescimento & desenvolvimento , Nitrobacter/imunologia , Nitrobacter/isolamento & purificação , Oxirredução , Coelhos , Microbiologia do Solo
12.
FEMS Microbiol Ecol ; 39(2): 121-7, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19709191

RESUMO

Competition between different isogenic mutants of Pseudomonas fluorescens unable to carry out the first steps of the denitrification pathway was compared in soil micro-columns non-planted or planted with maize. A new isogenic mutant of P. fluorescens YT101 affected in both nitrate and nitrite respirations was constructed and used as a model of non-denitrifying strain (FM69MS strain). The outcome of the selection exerted by the plant after co-inoculation of FM69MS at the same ratio either with an isogenic denitrifier unable to reduce nitrate (Nar(-) mutant) or with an isogenic NO2 (-) accumulator (Nir(-) mutant) was investigated in non-limiting NO3 (-) conditions. Regardless of the inoculated mixture, both strains were able to grow in both rhizosphere and non-planted soil. The proportion of Nar(-) or Nir(-) strain in the Nar(-)+FM69MS or Nir(-)+FM69MS total introduced population remained stable in non-planted soil. In the rhizosphere, we observed a higher competitiveness of the Nir(-) mutant compared with FM69MS, whereas the latter showed the same competitiveness as the Nar(-) mutant. These results provide the first demonstration that NO3 (-) reduction is the main nitrogen-dissimilating step controlling the competitiveness of P. fluorescens in the rhizosphere.

13.
Gerenc. ambient. ; 2(16): 402-04, 1995. ilus
Artigo em Espanhol | BINACIS | ID: biblio-1162247

RESUMO

El artículo desarrolla los riesgos de las bacterias manipuladas que dependen del impacto global que causen sobre el ecosistema, es decir, de su capacidad para sobrevivir e intercambiar material genético con comunidades de microorganismos autóctonos


Assuntos
Bactérias
14.
Gerencia ambiental ; 2(16): 402-04, 1995. ilus
Artigo em Espanhol | BINACIS | ID: bin-138187

RESUMO

El artículo desarrolla los riesgos de las bacterias manipuladas que dependen del impacto global que causen sobre el ecosistema, es decir, de su capacidad para sobrevivir e intercambiar material genético con comunidades de microorganismos autóctonos


Assuntos
Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...